Int. J. Solids Structures Vol. 29. No. 10, pp. 12551272, 1992 0020-7683/92 $3.00+ .00
Printed i1n Great Bntasn. ¢ 1992 Pergamon Press pic

DYNAMIC PULSE BUCKLING OF A SIMPLE
ELASTIC-PLASTIC MODEL INCLUDING AXIAL
INERTIA

D. KaraGgiozovat and NORMAN JONES

Impact Research Centre, Department of Mechanical Engineering. The University of Liverpool,

P.O. Box 147, Liverpool L69 3BX, U.K.

(Received 26 February 1991 in revised form 27 September 1991)

Abstract—The phenomenon of dynamic elastic-plastic buckling is studied using a simple imper-
fection-sensitive idealized model with elastic linear work hardening springs to simulate the elastic—
plastic material behaviour.

The stability theorem for autonomous systems is used to obtain the transition between stable

and unstable behaviour. A step loading and three types of finite duration pressure pulses are
examined. In some cases, several elastic-plastic cycles of spring deformations occur before the model
shakes down to a wholly elastic behaviour.

The various results show that the effects of a pulse loading are significant even for pulses having

a duration comparable with the natural period of vibration. Furthermore, the model becomes more
sensitive to the influence of initial imperfections as the pulse duration decreases.
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NOTATION

L.fi2Kr?

masses defined in Fig. I(b)

lengths of members shown in Fig. 1(a)

LyL,

time

displucements of springs | and 2 in Fig. 1, respectively
dimensionless displacements u,/L, and u,/L,, respectively
vertical displacement in Fig. 1(b)

forces in springs 1 and 2, respectively

spring coeflicients defined in Fig. 2

KrL,

amplitude of external force

defined by eqns 3(j-1)

non-linear spring softening characteristic at A in Fig. 1(b)
wilw;

K./K

horizontal displacement of A in Fig. [(b)

initial imperfections indicated in Fig. 1(a)

!

2K/m,

2Krim,

displucement at yield in springs ! and 2

pulse duration indicated in Fig. 3

ratio of pulse duration to the natural period of horizontal vibration
o )ér

step of numerical integration.

I. INTRODUCTION

The dynamic buckling of imperfection-sensitive structures is examined by Budiansky and
Hutchinson (1966), Danielson (1969), Hutchinson and Budiansky (1966), Jones (1984),
Jones and dos Reis (1980), Karagiozova and Jones (1990) and Lindberg and Florence
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1256 D. KARAGIOZOVA and N. Jones

(1982). Although the static buckling of structures is fairly well understood, a clear under-
standing of dynamic plastic buckling is lacking. However, the analysis of idealized models
with simplified material properties provides some insight into this complex phenomenon.

The dynamic buckling of idealized elastic models is considered by Hutchinson and
Budiansky (1966) and Danielson (1969) for a step loading having an infinite duration and
by Budiansky and Hutchinson (1966) for a pulse load having a finite duration.

Dynamic buckling of the simple imperfection-sensitive model in Fig. | with the sim-
ultaneous influence of material plasticity and initial geometric imperfections is studied by
Jones and dos Reis (1980) for a step loading. The numerical results reveal two distinct
forms of dynamic response known as “‘direct” and “indirect” dynamic buckling which
occur within specific ranges of the frequency ratio for the idealized model.

Various features of the dynamic elastic-plastic buckling of the model in Fig. 1 with
m, = 0 under two pressure pulse loadings is examined by Karagiozova and Jones (1990).
In particular, it was observed that, for large initial imperfections. a puise loading causes
many combinations of elastic and plastic spring deformations before instability occurs,
while a step loading predicts instability within the elastic range, at least for the parameters
studied.

The idealized elastic linear work hardening imperfection-sensitive model in Fig. | under
a step loading and a finite duration pressure pulse is considered herein when retaining the
influence of axial inertia (i.e. m, # 0).

2. BASIC EQUATIONS

The model in Fig. 1(a) is subjected to a dynamic loading P(¢) at point H. The various
members are rigid and weightless and the only masses, m, and m,, are concentrated at H
and A, respectively. The unloaded model has a stress-free initial imperfection &, while the
member FHG is contrained to remain horizontal. Member FHG and pin B are constrained
to move vertically in frictionless guides. Frictionless pins arc located at A, B and I and the
behaviour of the softening non-linear spring at A is governed by the relation F = &7, where
&+ & is the total horizontal displacement at A, as indicated in Fig. 1(b). The material

(a) (b
Fig. 1. Simple model. (a) Initial position. (b) Deformed position.
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Fig. 2. Elastic-plastic characteristics of springs | and 2.

behaviour of the model is simulated by springs 1 and 2 with the load-displacement charac-
teristics shown in Fig. 2 and, for convenience, it is assumed that the springs have identical
characteristics.

The dimensionless deformations of springs 1 and 2 are

X =y—zC+2D—-rz and x;=y-z(c+23)+r: (1a,b)

respectively, and the equations of motion may be written in a dimensionless form after
Jones and dos Reis (1980) :

ey +r3(Q,+ Q)2 = r’Q(1)/2
and
(2@ + Q) ~r(Q1—Q)/2—az* =0 (2a,b)

where

y=yolls z=¢/L;, I= s!/[-z- r=L,/L,, w§ = 2K/m,,
ol =2Kr m,, t=ow}wi, a=L,p2Kr*, P.=KrL,,
QI=FI/Pcv Q2=F2/Pcv Q=P/P,_. T=w! and ( )’=a( )/(')r (3a~m)

The relationship between the dimensionless spring forces Q, and the respective dimen-
sionless displacements x, may be expressed in the form

Q. =yxi/r?, a=12. @)

¢, =1, when Q™ < Q, < O™, where QT is the largest dimensionless force in the
previous plastic loading of spring a, or the dimensionless yield load (A,L,/L}) when no
plastic flow has occurred. Q7 is the smallest dimensionless force in the previous plastic
reloading of spring « or the dimensionless yield load (—A,L,/L}) in tension when no plastic
reloading has occurred and QT = Q™ —2A',L2/Lf. v, =4A, whenQ, > Q@7 and @, > 0,
or when Q, < Q7" and @} < 0.

Four kinds of dynamic loading are discussed in this article. Numerical results are
obtained for a rectangular pulse loading [Fig. 3(a)], which is characterized by the dimen-
sionless applied load Po/P. and the duration of loading t,, together with two triangular

Plp P/p P[p‘

[

Rp fp U

(a) (b) ()
Fig. 3. (a) Rectangular pulse load. (b) Triangular pulse 1. (c) Triangular pulse 2.
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loadings [Figs 3(b) and 3(c)]. Comparisons are made with the step loading case, which has
an unlimited duration and has been considered previously by Jones and dos Reis (1980).

Equations (2) are re-cast into a set of non-linear algebraic equations using finite-
difference expressions [see Jones and dos Reis (1980)] and are solved at each time step with
a standard Newton-Raphson procedure [see Carnaham et al. (1969)).

3. STABILITY OF THE MODEL

The structural response depends on the loading history of the springs because there is
no one-to-one stress—strain correspondence in the presence of plastic strains according to
eqns (4). Different kinds of behaviour are possible. For example, if the plastic strain
increments have the same sign throughout the entire deformation process. then the total
strains may become so large that the structure becomes unserviceable. On the other hand,
it is also possible that after some plastic deformations during an initial phase of loading,
the structural behaviour may become eventually elastic and stable {see Konig (1987)].

Let us first consider a step loading. Substituting eqns (1) and (4) into eqns (2). the
governing equations of motion become

y'+ay+bz+c2i+d =0

and
tay+bizte i rdiyz et +f,=0 (5a,b)
where
ay =W +¥2)/Q2e), o= —a, b= =Y +¥)I+ W =) 2)/e
dy = =[(QV+QDr’ — (X1 +¥:x3) — r Qul/(2¢) (6a-d)
and

ay = — (Y +¥ )3 = =y)/2r
by = —[QU+0%— (Xt +ox)/r =22+ =25, Y2 = (b +§2)2]
=30 FY DI 3 ) 2r—a, dy= = ¥, ey = —d;
Jr= =00+ Q=] +¢2x)/P 2= (QV - QD2+ (Y1 XV —Y2x3)/2r  (Ta-f)

and the superscript “*°" indicates the values of the corresponding quantities when the value
of Y last changed in either of the springs.

Generally speaking, the coefficients of eqns (5a, b) are time-dependent since ¢ have
the values of 4 or | depending on the active part of the force-displacement relationship in
Fig. 2. Taking into account that ¢, is a single-valued function for each part of this diagram,
eqns (5a, b) may be solved and studied step-by-step at each phase of the deformation.

Atevery step, the coefficients of eqns (5a, b) are determined using , and ¢ ,. However,
to illustrate the general procedure the behaviour of only one spring is considered below.

Assume that the external load Q, is sufficiently large for the spring force Q, to be at
point A in Fig. 4 when 1 = t,. Further deformation of the model is governed by eqns (5a, b)
with v, = 1 and the initial conditions

Q,

% Xa

Fig. 4. Elastic-plastic loading cycles of the springs.
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Y(ta) =ya, 2(ta) =24, Y(r) =y4 and Z'(14) = Z4. 8

This phase of motion with ¢, = 4 is completed when the point B in Fig. 4 is reached. The
next phase of motion has y, = |1 and begins with the initial conditions for y, -, y" and =" at
point B. It is evident that this solution procedure may be continued when passing through
the points C, D, E and F in Fig. 4.

This solution procedure for eqn (5) leads to an autonomous differential equation
system at every step with ¢, = constant. If at every new stage of the motion the initial
conditions are y*, =* and v'*, -’*, then the new vaniables y,. v,. =, and w, may be introduced
as follows:

yo=y=y* vi=yi=v—et, sy=c-f owi==w—wt ®

wherev =y and w = =",
Thus, eqns (5a. b) may be rearranged as a system of four ordinary first-order differential
equations

Yi=0,, vi=—ay,+bz—czi+d, ) =w,
and
Wy =y by ayzi=bzl —dyy s+ f (10a-d)
where
by= —(b,+2az*), dy= —(a,y*+b,2*+c,2* +d)), ay= —(c+3c32*),
¢y = —(ay+dsz*), by = —(by+2¢y2*+dyy* +3c12*?)
and

fo= = (bz* +ary* +c 2% + 2 7*  + dyy*z* + f1). (11a-f)
The singular points ()}, v, =%, w}) of eqns (10) satisfy the equations [see Davis (1962)] :
Yil}) =0, zi(w)) =0, v,()1,z))=0 and wi()4,7}) =0.  (l12a-d)

In the general case, not all the singular points are real, but only the real ones are
considered in this study. From the stability theorem [see Cunningham (1958)] the nature
of the solution in the neighbourhood of the singular points is determined from the roots of

the equation
af;
det (—-i>-:5']=0 13
[ ayk £ . * ( )

where

dy .
a'.ti.—_j;(y,,yz.....y,,). i=1,2,...,n

In the case under consideration, eqn (13) becomes
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—A 1 0 0

—al —;u b,.-—ZC,:’, 0 =0. (14)
0 0 —4

C)—dz.'f 0 -382(:‘|)2+203:’|-d1y’| +b3 -1

The solution of eqns (10) is unstable even if only one root of eqn (14) has a positive
real part.

The stability of the model may be determined by following the force-displacement
relationship step-by-step throughout motion and studying the stability of eqns (10) with
the initial conditions corresponding to the instants when either or both of the spring
characteristics change from one regime to another. [t is possible when the load amplitude
is sufficiently large, that eqn (10) with the initial conditions for the current phase of
deformation, are unstable. However, if the strain increment then changes sign during
subsequent motion, it is possible that the next phase of motion is stable according to eqns
(10) and the initial conditions corresponding to the instant that the strain increment changes
sign.

The material model allows a sequence of elastic and plastic behaviour of the springs
(Fig. 2) and. therefore, a number of loading-unloading cycles including plasticity in each
complete cycle, is possible. It is of interest to enquire whether or not the model will shake
down to a stable wholly elastic state after a finite number of complete cycles. In this
circumstance, the displacements x, will be bounded as x}"" < x, < X7 with Q" <
Q. < O and stable behaviour of the model. This behaviour is possible only if the rate
of the spring force increments are non-increasing functions of time during the plastic
phases of motion. Every phase of motion with plastic deformation is then characterized by
a decreasing foree increment AQ, and after a finite number of clastic-plastic cycles the
model will, therefore, shake down to a wholly clastic state. The spring force increments
AQT™ /At and |AQ"|/At arc shown in Fig. 5(a). AQ™" and AQ™" arc the incremental
spring forces during the plastic loading and plastic reloading phases, respectively.

By changing the cocflicients and the initial conditions in eqns (10), the condition for
non-increasing spring force increments provides a wholly elastic solution during the last
phase of motion. Different kinds of stable behaviour of the model can be established
depending on the real part of the roots of eqn (14). In particular, if the roots of eqn (14)
are two pairs of pure imaginary numbers, then two vortex points exist which determine
limit cycles in the planes (y,y’) and (z,2’) for the linearized version of eqns (10). The
conjugate complex roots with a negative real part determine the stable behaviour as a spiral
in the corresponding planes.

In the case of a pulse loading, the above procedure is also used to study the stability
of the model after the pulse is released. The initial conditions for y, z and @, in eqn (10)
are determined at T = 1, which is shown in Fig. 3. The temporal variation of the quantities
AQ™ /At and |AQ™"|/At are presented in Figs 5(b,c) for rectangular and triangular
pressure pulses, respectively. These are not monotonically decreasing functions of the
dimensionless time due to inertia effects, but the overall trend does decrease with time.

The spring force Q, during the deformation of the model under a rectangular pressure
pulse is shown in Fig. 6. The increments AQT** are determined from the values of @, on
the line AB while the pulse is active where B is the largest value of Q,. The increments
AQT" while the pulse is active are determined from the values of @, on the line CD. When
the pulse is released at t,, spring | unloads to point B, and the values of Q7"** are bounded
by the line C, D, while the values of QT lie on line A, B,. It transpires that the spring force
increments decrease with time and QT** and QT reach the constant values coinciding with
the points E and F, respectively, thereby providing a wholly elastic stable behaviour of the
model.

4. DYNAMIC BEHAVIOUR OF THE MODEL

The behaviour of the idealized model in Fig. 1(a) with masses m, and m, under a step
loading has been studied by Jones and dos Reis (1980) with the assumption that springs |
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Fig. 5. (a) Spring force increments with time for a step load having P,/P, = 0.72,4 = 0.75,F = 0.001,

wJw, = 0316, a= 10, r= 1, A Ly/L} = 0.268 und As = 0.005. (b) Spring force increments with

time for a rectangular pulse load with Py/P, = 1.0, 1, = 10, w,/m, = 0.55, i = 0.75, Z=0.001,

a=10,r=1,AL,/L} =0.268 and As = 0.005. (¢) Spring force increments with time for a tri-

angular pulse | with P,/P. = 1.9, t, = 10, w ,jw, = 0.69, 4 = 0.75, = 0.001,a = 10, r = |, A L,/
L} =0.268 and As = 0.005.

and 2 may load elastically and plastically but unload only elastically. The possibility of
spring reloading in the plastic range is considered in this article.

A stable behaviour of the model is shown in Figs 7(a, b) for an external step loading with
P/ P. = 0.8 and for two different values of the frequency ratio w,/w,. For w,/w, = 0.08, i.c.
for a relatively small mass m,, some plastic flow occurs during the first four cycles and
wholly elastic vibrations y(t) beginat t = 7.

The amplitude of y(t) in Fig. 7(a) for a large mass, m,, having w,/w, = 0.75 is larger
than that for w,/w, = 0.08 throughout the deformation process in Fig. 7(a) even though
elastic-plastic deformation occurs during the first 20 complete cycles.

It is evident from Fig. 7(b) that the horizontal displacement z(r) is much larger for the
greater value of w,/w,, while the period is slightly smaller than the period of the vertical
displacement in Fig. 7(a). However, for the smaller value of w,/w,, the period of the
horizontal displacements is much larger than the period of the vertical displacements.

Unstable behaviour of the model has been examined and the numerical results which
are presented by Jones and dos Reis (1980) have been reproduced in the present study.
Using the material model proposed herein, the same types of buckling are established and
are shown in Fig. 7(c). For small values of w/w,, a direct type of buckling is observed,
while, for the larger values of w,/w,, instability occurs indirectly, as mentioned by Jones
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Fig. 6. Spring force @, during the deformation process for a rectangular pressure pulse with
Po/P. =08, 1,=5, w,fi,=0316, 1 =075 $=000l, «a=10, r=1, A, L,/Li =0.268 and
As = 0.005.

— Elastic (a)
== === Plasic
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3 0 3 ) 5 1
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Fig. 7. Model response to an external step loading with 4 = 0.75, 3 =0.001,a = 10, r = 1, A, L,/

L} = 0.268 and As = 0.005. (a) Axial displacement y(r) —stable behaviour with P,/P, = 0.8. (b)

Horizontal displacement z(t)-—stable behaviour with P,/P. = 0.8. (c) Horizontal displacement
z(t)—unstable behaviour.
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Fig. K. Phase-pline trajectories for a step loading with P,/P. = 0.8, A = 0.75, 3 = 0.001, a = 10,
rom ALy LT = 0.268 and As = 0.02.

and dos Reis (1980). Limit cycles 2°(z) for stable model behaviour are drawn in Fig. 8 for
the frequency ratios w, fw, = 0.08 and 0.75. The variations of the dimensionless horizontal
velocities 2° with the vertical and horizontal displacements for stable and unstable behaviour
of the model under a step loading, are shown in Figs 9(a-d).

A comparison between the dimensionless critical loads for three different types of
spring behaviour for modelling the material deformation, is presented in Fig. 10. For
frequency ratios lying within the range 0 < @ ,/wy < 0.5, the wholly elastic behaviour
predicts higher critical values of P,/P, than both models which include some plastic spring
behaviour. However, the model which includes a plastic reloading of the springs predicts
slightly larger values of P,/P, than the elastic—plastic case. The difference between the
critical values of P,/P, for elastic and elastic-plastic deformations was also established for
the cases when m, =0 and my # 0, and 0 < w,/w, < 0.5 by Jones and dos Reis (1980).
The case of plastic reloading was not considered by Jones and dos Reis (1980), but it is
observed in the present study to give only slightly larger critical loads so that it is not
important from a practical viewpoint.

The elastic-plastic model predicts higher values of P,/P, than the wholly elastic case
within the range of frequency ratios 0.5 < w,/w, < 1.0. Furthermore, the material model
including plastic reloading gives much higher critical values of P,/P. because of the possi-
bility of multiple elastic-plastic cycles when a significant amount of energy is absorbed in
plastic deformations. The large difference between the predictions of the two elastic—
plastic models when w,/w, 2 0.5 is due to the phenomenon of indirect buckling which is
characterized by an important interaction between the vertical and horizontal displace-
ments. The effect of the plastic energy absorption becomes more important because of the
long times required for the development of this kind of instability.

The behaviour of the idealized model under the rectangular pressure pulse in Fig. 3(a)
is shown in Fig. 11. Two complete elastic-plastic cycles are observed while the pressure
pulse is active and considerable plastic reloading occurs when the pulse is released [Fig.
11(a)]. Seven complete elastic-plastic cycles then occur until the motion becomes wholly
elastic at t = 19.335.
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Fig. 9. variation of the d'\mcnsiun\css hcrizomu\ veloci 2 wi qicat () and horizonlal (=)

disp\uccmcms for a St€P oading having 3 =073 2= 00019 10.r= 1.8 ,IL" = 0.268 and

As = 0.005. (a} Stable behaviou? of the model with an/twe = 0.316 and PolPe = 9.72. (0 Unstable

behaviou? of the model with @@ = 0.316 and Po/ P = 148. () Stable pehaviou? of the model

with @ fwe ™ 0.5 and PolPe= 0.38. &) Unstablc hehaviou? of the mode! with @[t = 0.75 and
p, P, =08
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0 o0z 06 06 08 10
Wy/ Wy

Fig. 10. Variation of dimensionless dynamic buckling load P,/P, with frequency ratio w,/w, for

Ai=0.75 2=0.0009375, a=10, r=1. AL;/Li=0268 and As=002. ------ . elastic

model | ——— elastic-plastic model: 1, model which does not permit plastic reloading of the
springs ; 2. model including the possibility of plastic reloading of the springs.

y (a)

— Elastic
------ Plastic

210% (b)

~10

Fig. 1. Model response to a rectangular pressure pulse with Po/P, = 0.8, t4 = 5, w,/w, = 0.316,
A=9755=0001,a=10,7r = |, AL,/ L} =0268 and As = 0.02.

The influence of the hardening ratio 4 = K,/K on the critical values of P,/P, depend
on the ratio of pulse duration to the natural period of vibration y, as shown in Fig. 12. It
is evident that the critical values of P,/P. depend strongly on the value of y, so that the
effect of the pressure pulse duration is significant.
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Fig. 12. Variation of the dimensionless dynamic buckling load £,/ P, with the ratio 7 for a rectangular
pressure pulse having @,/w, = 0.316,. 2 = 0.001,a = 10, r = 1, A, L,/L} = 0.268 and As = 0.02 for
three values of the ratio 4.

The initial imperfection sensitivity of the idealized model in Fig. | is presented in Fig.
13 for a rectangular pressure pulse loading. It is evident that the sensitivity to the initial
imperfections 2 increases as the dimensionless duration y decreases.

The response of the idealized model when subjected to a triangular pressure pulse [Fig.
3(b)] is shown in Fig. 14. Five complete elastic—plastic cycles occur while the pulse is active
and are characterized mainly by plastic deformations due to reloading of the springs. The
behaviour is almost wholly elastic after the pressure pulse loading is completed. Variation
of the dimensionless horizontal velocity =* with the vertical and horizontal displacements
for stable and unstable behaviour of the model under a triangular pressure pulse 1 is drawn
in Figs 15(a, b). The influence of the ratio 4 and the sensitivity of the critical load of the
model to the initial imperfections are presented in Figs 16 and 17, respectively. It is evident
that similar conclusions can be made to those for a rectangular pressure pulse.

The response of the model in Fig. | to a triungular pulse 2 {Fig. 3(c)] is presented in
Fig. 18. The behaviour of the model during the earliest phases of motion, while the pressure
pulse is active, is characterized by increasing plastic deformations. Two clastic-plastic cycles
with small plastic deformations during reloading of the springs is observed after the pressure
pulse is completed. The final cycle of the unloaded model in Fig. 18 is wholly elastic.

Figure 19 shows the significance of the pulse duration for the triangular pulse loading
2 on the dimensionless critical dynamic buckling loads. Even for y = | the critical values
are more than three times larger than the critical values for a step loading with 4 = 0.5.

R 1
4
22
20
18
16 Y208

10 Y=17
]

06
0001 0005 00%0 0015 0020 E

Fig. 13. Variation of the dimensionlcss dynamic buckling load P,/P, with dimensionless initial
imperfections Z for a rectangular pressure pulse having w /wg = 0.69, 4 = 0.75, & = 0.001, a = 10,
r=1.4A,L,/L} = 0.268 and As = 0.02 for three values of pulse ratio y.
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(2)

—— Elastic
08 ------ Plastic

20y (b)

Fig. 14. Modcl response to a triangular pressure pulse [Fig. 3(b)] with Py/P. = 0.8, 1, = 10,
@yfing = 0.316,A =0.75, £ = 0001, 0= 10,7 = [, A,L,/L} = 0.268 and As = 0.02.

(b)

Fig. 15. Variation of the dimensionless horizontal velocity =’ with vertical (y) and horizontal

(2) displacements for a triangular pressure pulse | having A = 0.75, 2= 0001, a= 10, r= |,

W /wo = 0.69,A,L,/L} = 0.268 and As = 0.005. (a) Stable behaviour of the model with Py/P, = 1.9.
(b) Unstable behaviour of the model with Po/P. = 1.999.
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20

10

Fig. 16. Variation of the dimensionless dynamic buckling ioad P,/P. with pulse ratio 7 for a
triangular pressure pulse [Fig. 3(b)] having w,/w, =0316, i =075, =0.001. a=10. r =,
A, L,/LY = 0.268 and As = 0.02 for three different values of the hardening ratio 4.

The initial imperfection sensitivity is presented in Fig. 20, from which it is evident that the
model becomes more imperfection sensitive with decreasing pulse durations.

The dimenstonless buckling pulses are 7 = yPy/P. and I = yP,/2P, for the rectangular
and triangular loadings, respectively. A comparison between the dimensionless critical
values is made in Fig. 21 for two values of 4 {Fig. 21(a)] and two values of the initial
imperfection 3 [Fig. 21(b)]. For pulscs having a short duration (y < 1) the triangular pulse
I predicts the highest critical dimensionless values of £, while the lowest values of the
critical dimensionless pulses are predicted for a rectangular shaped pressure pulse. For
long duration pulses (y > 2) the rectangular pressure pulse predicts the highest critical
dimensionless pulses, while the triangular pulse 2 predicts the lowest value of 1.

Figurce 22 shows a comparison between the variation with y of the critical values of
the pulse amplitude P,/ P, and the dimensionless buckling pulse 7 = y P,/ P, for rectangular
pressure pulses having my, = 0 and m,, # 0. Equations (2) are decoupled when my, = 0 and
only eyn 2(b) should be considered when taking into account that Q = Q,+Q,. This
equation is solved using the technique presented by Karagiozova and Jones (1990).

The numerical results show that axial inertia has an important influence on the critical
values of the pulse amplitude P,/P, [Fig. 22(a)] over the whole range of pulse ratios,
including y — «. The difference between the curves is particularly significant for short
duration pulses (y < 0.5). The model with m,, = 0 shakes down to a wholly elastic behaviour
after only one elastic-plastic cycle. However, the axial inertia of m, causes multiple cycles

ok
24
22
20
9
16
14
12
+0
08

Y222
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Fig. |7. Variation of the dimensionless dynamic buckling load Po/P, with dimensionless initial
imperfections Z for a triangular pressure pulse {Fig. 3(b)] having w /g = 0.69, 1 = 0.75, a = 10,
r=1,4,L,/L} = 0.268 and As = 0.02 for two values of the pulse ratio y.
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Fig. 18. Modcl response to a triangular pressure pulse [Fig. 3(c)] with P,/P. = 0.8, 1, = 10,
W fwg = 0316, 4 =0753=0001,ua=10.r=1,4,L,/L} =0.268 and As = 0.02.

of clastic-plastic deformations during the pulse duration as well as after the pulse is released.
‘This phenomenon allows much more energy to be absorbed during deformation which
increases, therefore, the critical values of the pulse amplitudes. Furthermore, the effect of
the pulse duration when my, = 0 is more significant only for short pulses (y < 1), while in
the case of m, # 0 this cffect is important cven for pulses having a duration comparable
with the corresponding natural period of horizontal vibrations.

The influence of axial inertia on the critical values of the buckling pulse [ = yPy/P, is
shown in Fig. 22(b). The minimum value of the buckling pulse with m, = 0 occurs near
y = 0.4 whereas the minimum value is near y = 1.2 for the buckling pulses with m, # 0.

5. CONCLUSIONS

The imperfection-sensitive idealized model in Fig. 1, which has elastic—plastic springs
to simulate the material behaviour, was subjected to various dynamic loadings. The model
response under a step loading, a rectangular pressurc pulse and two types of triangular

R
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20

Fig. 19. Variation of thc dimensionless dynamic buckling load P,/P, with pulsc ratio y for a
triangular pressure pulse {Fig. 3(c)] having ) /we =0.316, 7=0.001, a=10, r=1 and
A,L,/L} = 0.268 for different values of hardening ratio 4.
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Fig. 20. Varnation of the dimensionless dynamic buckling load P,/P, with dimensionless initial
imperfections Z for a triangular pressure pulse [Fig. 3(c)] having w,/w, = 0.69, 4 = 0.75, a = 10,
r=1,A,Ly/L; =0.268 and As = 0.02 for two values of the pulse ratio ;.

pressure pulse was examined using a numerical method. It is found that the stable response
of the model shakes down to a wholly elastic behaviour after a certain number of elastic-
plastic cycles of spring deformations for all the external loadings considered.

Higher critical values of a step loading than those reported by Jones and dos Reis
(1980) are obtained when the springs are allowed to reload plastically. The difference
between the two elastic—plastic models is more significant for indirect buckling in the range
0.5 <w,/w, < 1.0.

= A2075

[ (b)

Fig. 21, Variation of the dimensionless pressure pulse / with pulse ratio 7 and with w\/w, = 0.316,
a= 10, r=1,4,L,/L}=0.268 and As = 0.02. (a) = 0.00l and 4 = 0.5, i = 0.75. (b) 4 = 0.75
and £ = 0.001 and £ = 0.01.
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Fig. 22. Numerical results for a rectangular pressure pulse having a = 10, r = [, A, L,/L} = 0.268,

)._- 0.7.5 and 3 = 0.0(!1. seeene, g = 0] ————, w/my = 0316, As = 0.02. (a) Variation of the

dimensionless dynamic buckling load P,/P, with ratio y. (b) Variation of the dimensionless rect-
angular pressure pulse / with pulse ratio y.

It was observed for all the numerical calculations in this work, that the spring force
rate in the plastic range, as shown in Fig. 5, always decreases for stable behaviour and
increase for unstable behaviour, This could, therefore, be used as an alternative instability
criterion,

The effect of the pulse loading is important even for pulses having a duration com-
parable with the corresponding natural period of vibration. A comparison between the
various pulses shows that a rectangular pressure pulse predicts the lowest dimensionless
critical pulse values 7 for short pulses, while, for pulses having a long duration, the lowest
critical pulses are associated with a triangular pressure pulse having P, =0att = 0.

The imperfection-sensitivity of the model is studicd for the pressure pulse loadings and
is observed to become more sensitive as the pulse duration decreases.

Axial inertia plays an important role in determining the critical values of the pulse
load. The phenomenon of multiple elastic-plastic cycles due to axial inertia gives higher
critical values of the pulsec amplitude over the whole range of pulse ratios including y — oo.
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